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Abstract

The artificial viscosity (Q) method of von Neumann-Richtmver1 is a
tremendously useful numerical technique for foilowing shocks wherever and
whenever they appear in the flow. We show that it must be used with some
caution, however, as serious Q-induced errors (on the order of 100%) can occur
in some strong shock calculations.

We investigate three types of Q errors:

1. Excess Q heating, of which there are two types: (a) excess Wall

Heating on shock formation and (b) Shockless Q Heatinqg:

2. Q errors when shocks are propagated over a non-uniform mesh; and

3. Q errors in propagating shocks in spherical geometry.

As a basis of comparison, we use as our atandard the Lagrangian
formulation given in Ref. 1 with Q = Cgplz(u )

This standard Q is compared with Noh's (Q&H) shock-followina method,
which employs an artificial heat flux (H) in addition to Q, and with the
(non-Q) plecewise-paraboloic method (PPM) of Colella and WOodward.7 Both
the (Q&H) method and PPM (particularly when used with an adaptive
shock-tracking mesh) give superior results for our test problems.

8,9 of

In spherical geometry, Schulz's and Whalen's tensor Q formulations
the hydrodynamic equations prove to be more accurate than the standard Q
formulation,1 and when Schulz's formulation8 is combined with Noh's (Q&H)

method, superior results are achieved.

l. INTRODUCTION

The artificial viscosity (Q) method of wvon Neumann-Richtmverl is a
tremendously useful numerical techniaue for followina shocks wherever and
whenever they appear in the flow. However, as we shall see, it muat be usged
with some caution, aes seriocus Q-induced errors can occur in some calculations
of strona shocks.

We investigate three types of Q errors:

1. Excess Q heating, of which there are two types: (a) excess Wall
Heating on shock formation and (b) Shockless Q Heating;

2. 0Q errors when shocks are propagated over a non-uniform mesh; and

3. Q errors in propaaating shocks in spherical geometry.
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We use, as a basis of comparison, the Laaranaian formulation of the
hydrodynamic equations given in Ref. 1, with the standard Q = Cgpzz(ux)z. In
Section 2, the Lagrangian differential eguations with Q fin plane (5§ = 1),
cylindrical (8§ = 2), and spherical (6§ = 3) geometry) are given, and we include
an artifical heat flux H = hgp!.zluxlex used in Noh's (Q&H) shock-followina
method.z* For our comparisons, three Q0s are defined: QL' QL(v), and QE' QL
(the standard Q above) and QL(v) (the original Q of Ref, 1) are referred to as
Lagrangian (L) formulations, in that they spread shocks over a fixed number of
(Lagrange) mesh intervals (=3), independent of their actual physical size,
while QE is refgrred to as an Eulerian, or fixed-length formulation of Q,
max). Only
QL(v) depends on the geometry § (see Ref. 3, p. 319), and ae we show later,
this dependence on § introduces the most Shockless Q Heating error of any Q

which spreads shocks over a fixed physical (Eulerian) distance (= 3Ax

and the most Q error for shocks in spherical geometry. Thus, QL(v) is not a

preferred choice. We also define two Hs, H_ and HE' where H_ is used in

conjunction with QL’ and HE ig used with QELin the (Q&H) met:;d.

In Section 3, we give the difference egquations and formulations of the
Qs and Hs. The nominal difference formulation of QL is QL = Zp(Au)z, in which
the £ of the standard Q is taken to be equal to the Lagrange interval (aAx), and
the coefficient c2

0
refer to this use of QL as the standard calculation.

= 2. This is the benchmark Q used in our comparisons. We

There are two excess Q heating errors: (1) excess Wall (or piston) Heating
due to Q, which occurs on shock formation (e.g., at a rigid wall where a gas
is brought to rest and a shock is propagated away, or at the sudden startup of
a piston) and (2) Q heating for shockless compreasions (i.e., when ur < 0 and
no shock is present).

In Section 4, we investigate the Wall Heating Q error in test problem #l.

This is an infinite-strength, constant-velocity shock in a perfect (y = 5/3)
gas. A cold gas (eo = Po = 0), initially moving with velocity uo = -1, is
brought to rest by a rigid wall located at the origqin. A shock is generated
at the rigid wall and moves to the right with conatant states (u+ = 0, p+ = 4,
e+ = 0.5, etc.) and a constant shock speed (S = 1/3).

The excess Wall Heatinag error occurs in the first few zones near the wall

*The idea behind the (Q&H) shock-following method 1s to approximate nature more
closely by smearing shock discontinuities using artificial heat conduction as
well as artificial viscosity. In particular, hot spots caused by using Q alone
are eliminated, or at least reduced by using both Q and H.



and shows up as overheating, or what is equivalent, a dip in the density (Fig.
1). (That is, since the the post-shock pressure P+ is nearly constant, then,
for P+ = (y - 1)p+e+. a peak in e+ results in a dip in p+.) Thie error qoes

with the size of the Q coefficients, 02

0
depend on the Q formulation (Fig. 3). That is, in Fig. 3, we see that the

and c1 (Fig. 2), and is also seen to

error is larger for QE than for QL (with the same sgize coefficients c: and
Cl). By numerical arguments (Section 4.2), and from Fia. 4, we see that this
Q error is inevitable and is, in fact, built into the exact solution of the
differential equations (2.1) with Q given by (2.2). Indeed, we arque (Section
4.2) that such a Wall Heating error will occur for any shock-smearing method
(in the absence of heat conduction), whether a viscosity Q occurs explicitly
in the method or not. Now, because the (Q&H) shock-following method does

include an (artificial) heat-conduction term H, then, as in nature, the excees

Wall Heating error is eliminated. This is seen by comparing Fig. 5 (no heat
conduction) with Fig. 6 using the same Q as in Fiq. 5, but with the heat flux
B ¥ 0, and indeed the Wall Heating error has been eliminated.

In Section 5, we investigate the Shockless Q Heating error using a clasa
of test problems (with exact solutions for all geometries §) called Uniform
collapﬂe.s Here, the fluid is shockless, even thougk it is everywhere
compressing. In the Q method, an energy error, Ac¢., occurs for QL' QE' and
for QL(v). In particular, in spherical geometry (§ = 3), the QL(v) eneray
error, AsL(v), is nine times as large as the QL energy error, AeL (i.e.,

2
AeL(V) = § Ae, = 9AeL). This fact stronqaly rules in favor of our use of

L
2
QL = 2p0(Au) as the standard Lagrange formulation of Q, rather than the
original QL(v) suggested in Ref. 1.
In Section 6, we investigate the second type of Q error by introducing a

non-uniform mesh (Ax = RAxk « where R is a constant) into problem #1 (see

Fig. 7). As our ata:;:rd Q, we use QL = Zp(Au)2 and compare the QL
errors for R = 1.05, 1.15, and 1.25 in Fias. 8, 9, and 10. Because the type %2
errors approach 100%, they can be a serious concern. A remedy ie to use QE'
the fixed-length Q0 (Fig. 11). Here we see that QE completely eliminates this
non-uniform mesh error, but that the Wall Heating error is very large. By
using both QE and Hﬁ in the (QE‘HE) method (Fig. 12), we see that all error is
eliminated. That is, the (QEGHE) shock-followina method offers a 100% fix
for both the type #1 and type #2 errors.

Unfortunately, using QE spreads shocks over a fixed physical distance of

=3Axmax, which is unacceptable in those regqions of the problem where a smaller

3
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mesh interval occurs. Now this non-uniform mesh error clearly depends on the Q
formulation, and we can ask, "Is it possible to find a Lagrange (L) formulation
of Q (i.e., where g = Ax) for which this type of error is also zero?" The
answer appears to be that this is unlikely, because comparieons of other QLs6
(see Fig. 13) show a comparable error for all of the QLF tested.

Section 7 contains a theoretical explanation for the errors associated
with letting ¢ = Ax in QL' Thie implies that 2 depends on x [i.e., ¢ = 2(x)]
in the differential formulation of QL’ which, in turn, leads to a fictitioue
frame-of-reference velocity in the differential equations. This fictitious
frame of reference is then shown to account for the observed errors. As a
result, this error [due to letting g = £(x)]1 can be expected in all Lagrangian
formulations. The fact that this error is already an error in the solution of
the differential equations is established numerically in Fia. 14.

As we note in Fig. 13, the non-uniform mesh error increases with cg and
cl' and thus we would like to minimize Cg and Cl' In particular, the (QL&HL)
method permits us to use considerably smaller QL coefficients, while at the
same time eliminating the type #1 Wall Heating error. This can be geen in
Figs. 15 and 16, where indeed the Wall Heating error is eliminated altogether,

and we note that using H_ with QL resulte in smoother shocks. Having emoother

L

shocks permite us to reduce the QL constants. In Fig. 16, when we take C: a ]
and C1 = 0, we see that this choice minimizes the type #2 error. The (QLFHL)
method thus is an acceptable procedure if the unequal zonina is not too severe.

In Section 8, we investioate the spherical-qeometry Q errors using Noh's
spherical-shock test problem2 (Fia. 17), which for 6§ = 3 is8 just a generaliza-
tion of test problem #l. This type #3 error is considerably more complicated
than the previous Q errors, in that it depends both on the Q formulation

fe.g., QL ve QL(v)l, and also as to whether Q is treated as a scalar viscosity
as in Ref. 1 or as a tensor viscosity, as given by Schulze or Whalen.9 That
the errors are truly enormous is seen in Fig. 18, where the error for the
standard QL formulation ie nearly 600% near the origin and nearly 1000% for
QL(v) - the original definition of Q (when generalized to spherical geometry)
given in Ref. 1. In Fig. 19, we see juat how serious this error can be and how
slowly the solution converges to the exact solution (i.e., p+ = 64)., Indeed,
even for 800 mesh points in the unit sphere (K = 800), there is still a
considerable error near the origin.

The explanation is given in Fig. 20, where we show that the error results

from the finite shock thickness, which prevents the Q method from determining

4



exact
= 16). In Fig. 21 we argue numerically (as in Section 4) that this type #3

error is already in the exact solution of the differential equations with Q

the correct preshock denaity. (That is, the shock spreading picks p- <p

(and is thus not related to any particular difference method). Indeed, the
error is due entirely to the finite shock thickness. We conclude that sharper
shocks give smaller Q errors. This is shown in Fig. 22, where the QL and
(QL&HL) methods are compared. The (QL&HL) golution aives both smoother and
more accurate results, and indeed, Fig. 22b shows the internal eneray using
(0&H) to be essentially correct (i.e., e+ = 1/2).

By comparing various QLs and (QL&HL) in Fig. 23, it is clear that sharper
shocks produce less error. The (non-Q) PPM of Colella and Woodward7 produces
even sharper shocks (Fig. 24) than any of the Q methods (i.e., PPM spreads
shocks over only one or two mesh intervals), and thus, for the 100-zone unit-
sphere test problem, PPM is superior to all of the scalar (S) QL or (QLGHL)
methods shown in Fig. 23. The small error in PPM is further reduced by usina
an adaptive mesh technique to capture the shock. The results (Fig. 24) show
that uesing 400 zones (with an adaptive mesh) is eaquivalent to a 1200-zone
(essentially converged) normal PPM problem. '

Section 9 contains Schulz's tensor Q formulation (T) of the hydrodynamic
eguations, along with his artificial viscosity, QL(S), definition.e The
calculations using this tensor formulation (Fig. 25) show a significant
improvement over the standard scalar (S) solutions (e.g., Fig. 23). However,
only a slight improvement is obtained using Schulz's QL(S) over the standard
QL' and we conclude that it is the tensor eqguations (T) that are important, and
not so much which QL formulation is used. 1In Fia. 26, the (T) formulations for
QL (T) and (QL&HL) (T) are compared. Figure 26b shows that the energy error
is almost zero using the (QL&HL) (T) method. Again, sharper shocks reduce
this type #3 error, and nearly exact results are achieved using a very
small QL constant (C: = 1/4) and by employing the (QLGHL) {T) method (QL =
(1/4)(Au)2 and I-IL = 10plAulAe, Pigs. 27a and b). In Fiq. 28, the various 0,8/
(QLFHL) methods and (non-Q) PPM are compared. The best results [in the
standard 100-zone (K = 100) problem] are obtained using the tensor formulation
of the (QL&HL) method with a small QL coefficient Cz. The best overall
results are obtained with the (non-Q) PPM using an adaptive-mesh shock-
following procedure, where, however, one should note that 400 mesh points are

used in the shock-capturing procedure versus 100 mesh points for the other




methods. The point to be emphasized here is that adaptive-mesh procedures can
define shocks very accurately and are suggested for all shock-following methods.

Section 10 contains Whalen'59 tensor formulation of the hydrodynamic
equations and his definition Qﬁ of a tensor Q. His results, shown in Figs. 29
and 30, are remarkably accurate, even for a mesh as coarse as K = 25 (Fig. 30).
It is not yet clear whether his tensor formulation gives equally good results
for more-complicated shock problems, and we await further word on this from
Whalen. Clearly, though, his formulation, (10.6) and (10.7), produces the
most-accurate (Q only) resulte for our test problem and needs to be
investigated further.

In Section 11, we conclude that the Q errors of types #1, #2, and #3 are
not due to the difference-method solution, and thus our difference equations
don't contribute to the Q errors that we investigate. Rather, Q errors are
intrinsic to the artificial viscosity (Q) shock-following method itself, and
are thus already contained in the exact solution to the differential
equations with Q. Consequently, improvements must be sought to modify the Q
method (e.g., by using a tensor formulation and using both Q and H to follow

shocks) or to minimize the physical shock thickness, as in the non-Q PPM, or
more generally by using an adaptive-mesh shock-capturing procedure. 1In all

cases, narrow shocks produce the least error.

2. LAGRANGIAN FLUID EQUATIONS WITH ARTIFICIAL VISCOSITY Q AND HEAT FLUX H

Von Neumann and Richtmeyetl considered their artificial viscosity Q to
be a scalar guantity, and we take their formulation of the Lagrangian fluid
equations as our standard. Also, the new (Q&H) shock-following method of
Noh2 (which uses an artificial heat-flux H in addition to the artificial-
viscosity Q to follow shocks) is included in the formulation.

2.1 DIFFERENTIAL EQUATIONS

The independent Lagrange variables are r and t, where r is taken as the
initial position of the Eulerian (physical) coordinate (i.e., R(r,0) = r]; and
U, pr ¢+ P, Q, and H are the velocity, deneity, internal energy, pressure,
artificial viscosity,1 and artificial heat flux,2 respectively. A more useful
independent variable is the mass, m, where, by the conservation of mass, we can

6



- - 0
write dm = ch6 ldR = cpor6 1dr = p drc, and the differential equations
for plane (§ = 1), cylindrical (§ = 2), and spherical (§ = 3) geometries are
as follows (with the usual notation 3f/3t = ft' f/or = fr' af/am = fm' etc.):

N

ut = -6R (P + Q) momentum

Rt =1 position

v= (1/p) = (Rs)m masse S (2.1)
§-1

t-:t = ~-(P + Q)vt + §(R H)lII enerqgy

P = P(psc) equation of state )

and where where Q and H are to be specified.
2.2 DEFINITIONS OF Q AND H

We include linear terms in Q and HZ,S These are used in some of the Q
error comparisons to produce smoother shock profiles, but otherwise don't
affect the Q errors that we consider. The subscripts L and E refer to whether
the space derivatives are in terms of the Lagranaian independent variable, r,

or in terms of the the Eulerian (physical) space coordinate, R.

2 2

Standard Lagrange Q: Q, (S ,cl) [ Pt (v ’ = CpCgu, , ifu <0, ., o
s 1fu > 0;
r —
2 p20221u 1e + h.pC 2 1fQ #0
Standard Lagrange Hi By (hyshy )= of rfr 1P gCe ' L7 7' (2.3)
0 s 1f QL = 0;
2 c?02?( ) c 1fu_ <0
Eulerian (fixed-length) Q: Q. (C3,C))= Copt (v C,pCqtup » R <7 (2.9)
0 s 1£ u_ > 0:
R =
We note that QL and QE are related by the Jhcobian J = R ¢ Where for the
quadratic Qs, QL = R2 QE’ or, in general, QL(CO, c ) = QEI(COR ) r QR 1.
2 n2022iu_te_+ h.oC if 0
Eulerian (fixed-length) H: H_(h.,h )={ '0°% '"r'€R" P PCgteg » 1f Op #0105
0 s 1F Qh = 0;

7
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0.2 £ 26-2, .2
Original Lagrange Q': Q. (v) -[‘co" el (v s f v <0, (2.6)

0 ,ifthO;

where co, cl’ ho, and hl are constants; £ is a constant with the dimensions of

length; and Cs is the local speed of sound. The usage, when H is included, is

to take Q and H €oge€fier and’ € WTH G, M avee i S0 wr Lhe

(Q&H) shock-following method.

Equation (2.6) is the original von Neumann-Richtmyer O formulation in
verms of the specific volume, v = (1/p), and is the only O here to depend on
the geometry (8) (see also Ref. 3, P. 319). In the Lagrange formulation (L),
the standard use is to take £ = Ar, which spreads shocks over a f£fixzed number
(=3) of mesh intervale (regardless of their size), while in the Eulerian
(fixed-length) formulation (E), shocks are spread over a fixed {physical)
length (=32), again independent of mesh size (hence one must take t = Anhax~3
Atmax" That is, to define a shock numerically, it must be spread over at

least two or three mesh intervals, and thus for QE' we should take g = ARmax7
but it generally suffices to let £ = Armax' and we do this for our problems.

3. DIFFERENCE EQUATIONS

Here we essentially follow the staggered meah (in time and space)
difference formulation of the fluid equationa given by von Neumann-Richtmyerl;
however, we deviate slightly from their formulation to ensure that total
enerqy ia conserved.* These equations have proven to be very accurate over
the years, and indeed, we conclude that they are very accurate for our study
of strong shock errors.

A final pressure P"*! = p(pftl, (M*l) i3 ayailable; however, it is not compu-
ted. This is done so that the total enerqv defined (in the sense of Trigger-
Trulio?) as Pt = (1/2)u"*¥3/2 n+1/2 4 Btl 34 conserved. This is ensured if
the final pressure is indeed given by (3.5), and ¢+l by (3.6). (In Ref. 1,
potl 4 pD of (3.6) is taken to be PPYl 4 ph 4 20n*1/2 (j e., only the latest Q

ie used in the energy eaquation), and in Ref. 4, this choice is shown not to
conserve total energy.)



3.1 DIFFERENCE EQUATIONS FOR PLANE, CYLINDER, AND SPHERE (§ = 1, 2, 3), respectively]

ret 8" = 2% + 0" V2, ()7 = BT 0 §

and Am_ = 1/2(A|||M_1/2 + A"k-l/z) + etc. Then (for constant aAt),

n+l/2 - n-1/2 _ _g8At _n.8-1 =n
uk v —K;: (Rk) (AP)k v (3.1)
n+l - B n+l/2
Rk Rk + At o R {(3.2)
8§, n+l
':::/z = 'QA:' ] ; (3.3)
k+l/2

and the energy ¢ is evaluated in two passes (see footnote on previous page)

(with all subscripts at k + 1/2);

+1 - + -

S - P ) B e, (3.4)
+1 + ~n+

P(pn 1. en 1) » and (3.5)

- +
8 lﬁln 1l

atl  n- (BB nel on, . st Al m)" + (R
€ = g 3 (v "=v) + == )

where ﬁn+1 = Hlpn+1, En+1] .

3.2 DIFFERENCE DEFINITIONS OF Q AND H

We restrict our definitions to the quadratic terms (i.e., set C h, =

1™ M

0), since the linear terms follow similarly.

et (ar)yi1/2 ™ Txar ~ Fxr BR)yiy/a = By ~ Ryr A0/ ® Yan " Yyt
and define
n+1/2 n+1/2
w172 | B keay2 1 0 gy <0 (3.7)
k+1/2 n+l/2 o

0 _ 1f (w4172 2

then the difference formulations are given by
9

—n 8
k+1/2 = Pk-172 ' ®ks1/2 = Prar2 Tkl T T’

' (3.6)

g e =y e s R e
AL S )

st

gy



n+l/2 - 2 2.n+l/2
Standard Q: (QL)k+1/2 Colp(Au) ]k+1/2 ’ (3.8)
and
n 2 (pIA;l):Ii;: . (plm'u):ti;; . .
Standard H: (H), = 2h ( |AE|)n+1/2 . |AG|)n+1/2 (ek+1/2 - ek-l/z) v (3.8)
p k+1/72 © ‘P k-1/2
_ n+l/2 Au 2 n+l/2
Fized-length Q: (Qp),,,/> = (G, 12 GR) Jk+1/2 + and (3.10)
AE n+l/2 | Au_ . n+l/2 r n
n 2| 3R kr12 © PIERe173 [|Ske1s2  Sk-1/2
(Hg)y = 4(hgt) e | . (3.11)
(o Aul)n+1/2 + (p |Au )n+1/2 l?k+1 - Rk-l
AR k+l/2 k+1l/2JL
the fixed-length H.
. _ 0
In (3.10) and (3.11), & is taken to be (a constant) g = (ARk+l/2)max'
and shocks will then be spread over a lenath (=3g). The original von
Neulann-kicht.yerl QL(v) of (2.6) is given by
vn+1 - vn 2
n+l/2 0.2 2 n+l/2 25-2 k+l/2 k+l/2
(0L () Tyyaya = (Cop ) (Ar)yy, »p °k+1/2( 1) At (3.12)
k+1/2
if %% < 0; otherwise 0, or in divergence form [i.e., (2.6) can also be
expressed as QL(v) =C p(LR ) lu + i____llE] ] and taking g = ar,
n+l/2 _ n+l/2 2
Q, (v)] - C:p::]]_';i [Au + ié-—;’—“éﬁ] , if :t< 0, otherwise 0. 3.13)
k+1l/2 k+1/2
We also note that, of the Qs and Hs, only QE(V) depends on the geometry §.
We will abbreviate (3.8) to QL(Cg) = Cop(Au)2 or, more
generally,
2,c;) = c2o(aw) 2 - ¢, pC_(au) (3.14)
QL ol 1 oD Au 1p B(Au -

in the test calculations. Likewise for H (ho, hl), etc. The nominal value
for co is taken to be 2; so that our standard calculations will be denoted by

Q (2 = 25 (au) 2 . (3.15)

10



4. EXCESS Q HEATING ERRORS
4.1 THE WALL HEATING ERROR TEST PROBLEM

Test problem #1 is that of a constant-gtate, constant-velocity ahock of
infinite strength (i.e., the preshock pressure P = Po = 0). The shock 1s
generated in a perfect (y = 5/3) gas by bringing the cold (eo = (0) gas to rest
at a rigid wall. This is just the familiar constant-velocity, piston-driven
shock, but in a frame of reference where the piston (here a rigid wall at x =
0) is at rest. The particular initial conditions chosen are uo = =1, po =1,
eo = 0, and thus P0 = (y - 1)poeo = 0, The post-shock solution is u+ = 0,
ot =4, ¢* = 1/2, ana P* = 4/3, (see Fig. 17b, § = 1). 1In Fla. 1, o' 18
plotted for our standard calculation using QL(Z) = Zp(Au)z. The Wall Heating
error (the shaded area) occurs typically in the first three zonee next to the
wall (or piston).

Figure 2 shows the dependence of the Wall Heating error on the magnitude

of Cj and C,. Here, 0, (1,1/3) is compared with Q (4,2/3) (i.e., C2 + (2.,
and C1 > 2C1). Clearly, the gp; error increases with Cg and Cl. Consequently,
the smaller the coefficient Co (and cl) the better,* and as we shall see later,
all of the Q errors that we investigate increase with C: (and Cl).

Figure 3 is a comparison of p; with p; for Q. and 0 (with Cz = 1 and

+
C1 = 1/3 for both Qs). The error bop = =4 - e is seen to be

Pexact ~ PE
considerably greater than the error ApL. This shows that the Wall Heating
error depends to some extent on the Q formulation; however, it cannot be

eliminated by some new definition of Q, since (as we shall show below) all

shock-smearing methods, inevitably, have some Wall Heating error.

*In particular, a noisier shock results from the use of a smaller C& (and C;),
but this noise does not seem, in practice, to result in any numerical error.
Thus, a noisier shock is to be preferred (even though a smooth shock is
esthetically more appealinq). We note later that one of the main advantages
of the (Q&H) shock-following method is that shocks are much smoother when a
heat flux H.is used in addition to Q, and thus one can use even smaller
constants Co and C1.

11



4.2 THEORETICAL DISCUSSION

We want to demonstrate that the Wall Heating Q error is unavoidable and
is already an error in the solution of the differential equations witb Q. The
proof is numerical. We consider QL of (2.2) as typical. We want to hold ¢
fixed in (2.2) and seek convergence to the exact solution by letting Ar + 0.
We can do this most simply by noting that the effect on Q of decreasing Ar
is simply egquivalent to increasing Co and Cl. For example, letting Ar + Ar/2
(and letting At + At/2 - which maintaine stability) is equivalent to just
doubling the QL constants Co a:d C1 (iL.e., lettina co + 2Co and Cl + 2C1).

For the remaining equations, Rk simply scales. That is, for Ar + Ar/2 and
At » At/2, then R}(Ar/2,At/2) = (1/2)R_(Ar,At). To show this, ve let

A = At/aAr (4.1)

be a constant, and from (2.2) we define a more general difference formulation

of QL (which reduces to (3.8) for g = Ar):

L

2 -2 L -
o 22) Plaw)” - (C) FD)eC, Bu , (4.2)

QL(AI'CO'Cl'z) = (C r

from which it follows that
QL(AI/N'CO'CI'I) = QL(AIINCOINCII!) . (4.3)

That is, letting Ar + Ar/N is equivalent to letting C,. + NC

0 0 and C1 > NCl.

Now, (3.1) to (3.8) also depend on Ar as follows:
n

n+l
R, (Ar,At) = kar + At Ju
i=0

i+1/2

i+1/2]
k

1
= arfk + AJu = ArRY (1) . (4.4)

Thus, for example, if we let Ar + Ar/2 (and since ) is constant, then
At + At/2), and we find from (4.4) that

R:(A!/ZcAt/Z) = (A:/Z)n:(l.x) = (1/2)R:(Ar-At) , (4.5)

as noted above, and from (4.2),
12



QL(Ar/2.c°.c1.z) = QL(At,2C ,2c1.z) ’ : (4.6)

0

which completes the demonstration. Now then, for Ar + Ar/2, we can compute

(Af/zlbt/zocovclr’-) = {(Ar,at,2C izclr'-) ) (4.7)

n n
Pr+1/2 Pr+1/2 0
and the refined mesh results can then be plotted by using (4:5) and (4.7).

That is, we find the left side of (4.7) by simply letting C: + (zco)2 and
C1 + ch and plot these results (which will be in terms of Ar and At) using
the formula (4.5).

Thies provides us with another interpretation of Fig. 2; calculating with
QL(4,2/3) (i.e., cg = 4 and ¢, = 2/3) 18 identical to a mesh refinement of Ar/2
(and At/2) while holding % =_0.01 fixed in QL(1,1/3) = 912(%5)2 - (1/3)1CL(%%).
Also, 1f curve 2 of Fig. 2 is plotted letting R: -+ (1/2)R: fi.e., a plot of
(p:, (1/2)R:)l. it then represents a mesh refinement of curve 1. This is done
in Fig. 4, and we see that the difference solution is essentially unchanged
with respect to the Wall Heating error.*

We conclude, then, that Wall Heating is inevitable for our difference
solution, since it already occurs in the exact solution of the differential
equations (2.1) with Q given by (2.2). ([The same conclusions hold for any Q
formulation using similar arquments, or indeed for any shock-amearing method,
as observed by Colella and Woodvard.7 Their more general result follows from
total-energy considerations, which show that, in shock smearing, too much work
is done when a shock starts up, or as here, when bringing the gas to rest.
Thus, Wall Heating is inherent in all such shock-amearing procedures.!

In real fluids, heat conduction is present, and excess Wall Heating cannot
occur (since any hot spot would be quickly diseipated). This is the basis of
Noh's (Q&H) method [(2.1) and (2.3)1, which approximates nature more closely by
using an artificial heat flux H (in conjunction with the usual artificial
viscoaity Q) to smear out shock discontinuities. In Fig. 5, one should compare
0 (CZ,C ) = QL(2/3,1/5) with Fig. 6, where QL(2/3,1/5), and the heat flux

L 0 1
HL(0,3/4) = (3/4)pcsAe is used. As expected, the Wall Heating error is zero.

*The overshooting in density is also reduced by letting Ar + Ar/2; indeed, this
overshooting error would vanish as Ar + 0. However, the Wall Heating error

would remain. Thus, the Wall Heating error is indeed part of the solution of the
differential equations with Q and depends on the size of the length, & - here,

L = 0.01,

13



We also note that the (QL&HL) solution ie considerably smoother. 1Indeed, this
is one of the chief advantages of the (Q&H) method; namely, it permits the use
of much smaller Q constants c: and C1 (which, in general, reduces Q errors)

and still maintains a smooth (or smoother) shock profile.

5. SHOCKLESS Q HEATING ERRORS

This is the situation where a compression wave existe (and thus ur < 0 and
Q ¥ 0), yet the exact solution is shockless. For this analysis, we consider
the useful Unifora Collapse Problem (see Ref. 5, p. 60), in which a flow is
everywhere undergoing a compression, but no shock develops. We congider a unit
"gphere” (0 <r 5.1), (for planar, cylindrical, and spherical geometries;

i.e., for § =1, 2, or 3), and to simplify the analysis (of the energy errors

due to Q), we take the pressure to be just a function of density: P = P(p) -
The initial values are u(r, 0) = -x, p = po, e = eo, and Po = P(po).
The boundary conditions are u(0,t) = 0 and u(l,t) = -1. The exact solution
is that the fluid simply coaste with its initial velocity (uo a ~-r) until
all points uniformly collapse onto the origin R = 0, at time t = 1. It is

easy to verify that the exact solution is given by

v(c,t) = -r, R=r(1 - t), and v = (1/p) = (1 - t)6 (1/90) . (5.1)
0 é-1
Thus, p = p(t), P = P(p) = P(t), and since €, = ~Pv,_ = §/p P(t) (1 - t) ’
then also ¢ = e(t), and no shocks are present. We now show that Q = Q(t) ¥ 0,
and thus Q will modify the exact solution. From (5.1), we let v = (1 - t),

from which p = pot-s, and we calculate QL' QE' and QL(v):

2 2 20 -
0 = (gt etu)” = (cmp s, (5.2)

(which ies not set to zero, since it passes the test u a -1 < 0). Also,

-1
u_ = ur/Rr = -7 < 0, and thus QE ¥ 0 and

R
) 2 2 2 0_-(8+2)
@ (Col) o(uR) = (Col) pT ’ (5.3)
Likewise,
0 2 - _
Q. (v) = (cpp') o) 2 %(v,)? = s%cuu 2%, (5.4)

14



1(6-1)

[
since v =--6 < 0.

t
p
In particular, we note that
0. (v) = &% , (5.5)
L L
thus Ql‘:. < QL(v) . Also,
0, = 20 <0 (as 1 < 1); (5.6)
L E — “E - ’ .
Consequently, QL will produce the least error. This Q error occurs only in

the energy equation, since Q = Q(t), and thus, in the momentum equation,

Qr = (. To examine this Q error in enerqy, let A¢ = r(et + Pvt)dt = -vatdt.

Then,

be; = -IQLvtdt = -G(Col.)2 1oge(r) >0 (ae T < 1), (5.7)
Aep = -fQ_v dt = ';'G(Co!.)z'r-z , and (5.8)
pey(v) = =0 (vhvat = -s3(C0) 2109, (v) > 0 . (5.9)

Now, as in (5.5)and (5.6), we find

2
AeL(V) = § Ac., and Ae S_AeE ’ (5.10)

L L

and indeed QL produces the least Uniform Collapse Q error.?

Now, ae ¢t + 0, the above errors Ae¢ + «; and consequently, this shockless Q
heating error can, under some circumstances, be serious indeed. From (5.10),
we see that AeE > AeL, and this helpa explain why the Wall Heating error for QE
was larger than for QL' with the same Co and C1 in Fig. 3. [This comparison
is appropriate, since the first zone of problem #1 has precisely the same
initial ‘condition as for the problem of Uniform Collapse.] A more serious
matter is the error AeL(v), which, for spherical geometries (§ = 3), is

*Several Qr formulations have been proposeds'8 for which the shockless Q
energy: error vanishes (i.e., Ac = 0), but, unfortunately, they don't
otherwise represent a general fix to the Q errors in shock tracking.
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nearly an order of magnitude greater than the error AeL. In 1956, because

of arquments similar to these, Noh (Ref. 5, p. 58) suggested that QL of (2.2)
be taken as the standard Q formulation for all geometries § = 1, 2, or 3.
We make the suggestion again (and for more reinforcement see Figs. 18 and 19),

since QL(v) atill seems to be in common use.

6. Q ERRORS FOR A NON-UNIFORM MESH

The second type of Q error occurs when shocks are propagated over a mesh
with unegual intervals. For our test problem #2, we again consider test

problem #1, but now we introduce a non-uniform mesh with

Ax = RAxk' (6.1)

k+l
where R is a constant: R > 1. We investigate the casee R = 1.05, R = 1.15,
and R = 1.25. To show the errors for both decreasing and increasing mesh
intervals, we let the mesh decrease for the first half of our test problem
[i.e., let R » R—l in (6.1)1, and then we let the mesh increase [i.e., use
{(6.1)]1 for the second half (Fig. 7). In Fig. 8, R = 1.05, and the density is
plotted for our standard QL = Zp(Au)z. The total error is shaded, and again
ve see the familiar Wall Heating error in the first several zones. The new
error: Ap; = p; - D:xact = p+ - 4 i8 too large (i.e., Ap; 20 f:r the first
half of the problem, where the mesh decreases, and too small (ApL < 0) for the
second half, where the mesh interval increases.

’ In Fig. 9, R = 1.15, and in Fig. 10, R = 1.25. The Wall Heating (type #1)
error is almost the same in each problem (in the sense that it is still juet
over the first several zones), but here the first few zones are larger, with
larger values of R, and thus the error becomes more serious as R increases.

The new (type $#2) non-uniform mesh error also grows with R and becomes very

serious (=100%8) for R = 1.25. This is unfortunate, as it is not uncommon to
use R = 2 in practice, and thus R = 1.25 might well be considered a modest
zoning change.

_ The qoo& news is-shown in Fiq. 11, where R = 1.05 and ihe Eulerian, fixed
length QE of'(2;4) and (3.9) eliminates the non-uniform mesh error conpletelﬁ.
The bad news is that very large QE constants are necessary [i.e., for A“max =

2 2
Axl/z = 2,65, then (Coz) = (CoAxmax) = 6 (for C, = 0.9) and clemax = 4/5

0
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(for co
smaller zones, and, in this regard, the use of QE is not satiefactory. Also,
the use of QE generates a very large type #1 (Wall Heating) error at the wall.

x 0.3). Thie is seen to spread the shock over a large number of the

In Fig. 12, the (qgﬁﬂﬁ) method is tested for R = 1.05, which results
in both the type #1 and the type #2 errore going to zero. Thus, in principal,
we have a complete remedy by using the fixed-lenath (E) formulation for both Q
and H. However, as mentioned above, this is not generally a satiafactory
solution because of the excessive spreading of shocks by the use of QE'

In Fig. 13, the results of several Lagrangian QLP (i.e., where g = Ax)
all give essentially the same error (where the larger errors correspond to the
use of larger constants C: and Cl), and we see that only QE eliminatee
the non-uniform mesh error completely. In particular, we note that the
non-uniform mesh error goes roughly as
aoy = Ca(R = 1) . (6.2)
That is, this error increases with the QL conetant Co (see also Figs. 15 and
16) and with the fractional change in mesh width (R - 1). Also, the term (R -
1) accounts for the change in sign of the error for R > 1l or R < 1. We also
note that White'a6 Lagrangian QL {which vaé designed, in part, to eliminate
the Uniform Collapse error of Section 5) here fares no better (or worse) than
the other Lagrangian QL formulations. This leads us to conclude that the
Uniform Collapse error is independent of the type $#2 (non-uniform mesh) error.

7. THEORETICAL DISCUSSION

In the standard difference formulations of QL’ the lenath £ in (2.2)

is takep to be lk+1/2 = A*k+1/2 » which qiveg (—z,ux)kﬂ/2 = ‘A“)k+1/2 in (3.7).
Now, when an unequal mesh interval is uaéd, setting 2 equal to Axk+1/2 (which
is no longer a constant) implies that ¢ is a function of x. That is, in the
differential formulation (2.2) of QL' L =2(x) . We wish to determine 2(x).,

vhere Ax is given by (6.1), or what is equivalent,

k+1/2

g (7.1)

Mrrs2 = % 8%/ -

After a certain amount of algebra, we find that 2(x) is given by

17



t(x) = 2I(R - 1)x + Axl/zl/(R +1) . (7.2)

Let us verify that, indeed, ‘k+1/2 = A Note that (7.1) implies

Xe+1/2°

3
l-R
XK = (T:—R )Ax]./z ’ (7.3)

and ve substitute this into (7.2). Collecting terms and using (7.1), we have

x + x k+1 k
k+l k l1-R +1~R .
lk+1/2 ;( 2 ) 2 (R 1)[ ]Axl/Z + Ax1/2 s(R+1) =

2(1 - R)
K =
R Axl/z = Axk+1/2 ¢+ 48 required. Thus, the differential formulation of QL
is given by
Q = éz z(x)z(u )2 -C. p 2(x)(u) ifu <0 (7.4)
L of x 1 x x— '

wvhere 2(x) is given by (7.2)

One consequence of using (7.4) instead of (2.2) in the differential
equations (2.1) is that steady traveling shocks are no longer solutions. To
see this, we note that the shock width (which is proportional to &) will now
be proportional to £(x) and means that the shock shape changes with space
and thus with time. This might still be an acceptable Q representation of
shocks, if only the proper shock-jump conditions held, but our numerical
experiments show, unfortunately, that this is not the case.

Let us examine more closely the error introduced by ¢ = £(x). We
suppose that Q is given by (7.4), and for simplicity, we take Q to be linear
in ux (i.e., C: = (0 and pCs = po C: = a constant). Then, Q is given by

_ 0.0
Q= C1 0 cs L(x) u, . (7.5)
We wﬁnt to show that (7.5) [with R ¥ 1 in (7.2)1 introduces a fundamental
error in the differential equations.
We examine the momentum equation, ut = —(l/po)Px - (l/po)Qx' and from

(7.5) we write

0 0
u, = I--(llpo)Px + C1 Cs 2 u . + l(C1 cs)ux] lx . (7.6)
2(R - 1)
From (7.2), we have t = “p=—7— and thus (7.6) can be written
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letting C_ = zc: ¢ (R +1)] as

- -1 o
ut- Cl(R - l)Csux = po Px + Clcsl.uxx - {(7.7)
We interpret the left-hand side of (7.7) as arising from a fictitious

frame-of-reference velocity i given by .
X=u+ cl(R - 1)Cs . (7.8)

We deduce this by the following argument. In general, time derivatives are
given by f =f, + (u - i)fx; where X = X(x,t) = x + Iidt is the Eulerian
coordinate of a general time-dependent frame of reference. For instance, if
i = uy, then E = fi, and X(x,t) = x + Judt is just the Lagrange reference
frame. If X = 0, then f = f, + ufy, and X(x,t) = x, which is the Eulerian
frame of reference. Thus, from (7.7), u - i = -C; (R - 1)c;, and it follows
that i is given by (7.8). This is juat the behavior we observed in our
numerical experiments [see (6.2)1. That is, from (7.1), R < 1 gives a
decreasing interval, and (7.8) implies that i < u, or the frame-of-reference
velocity 1s too slow, which (since the mass of a zone is constant) gives p+
too large. Likewise, for R > 1, then X > u, and p+ is too low (see Figs. 8,
9, and 10).

In addition to this error in the momentum equation, a more serious error
enters the energy equation. To see this, let us revisit the Uniform Collapse
problem of Section 5 and again take Q to be given by (7.5). The exact
solution in plane geometry (§ = 1) for the Uniform Collapse problem, where the
initial conditions are u(x,0) = ~x and P = P(p), is again found by assuming
p = p(t), and thus P = P(t). Doing this, we check by direct substitution into
(7.7), that the solution is given by

u(x,t) = -x - C, (R - 1)Est . (7.9)
Then, from X = x + Jfudt,

X = x(1-¢t) - (1/2)C (R - I)Eétz , (7.10)
and from (2.1), v = xm = (l/po)xx = (llpo)(l - t), or, since v = 1/p,

b= ol/(1-t) . (7.11)
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Thus, as required, p = p(t) and P = P(t). Indeed, (7.9) is the exact solution,

with Q given by (7.5). We can now compute the Q energy error, Ae, where

- - - - 00 0
Ae I(et + Pvt)dt vatﬁt fClp Csz(x)uxvtdt = C Caz(x)t .

1

Now, %(x) is given by (7.2), and thus
_ (4]
Ae = + ZCICS{I(R - 1)x + Axllzl/(R + 1))t . (7.12)

Equation (7.9) showse that the momentum error goes as cl(n - 1)t, while
(7.12) shows that the emergy error is more serious, as it depends on x as well
as t, and goes as cl(R - 1)xt.

There is still the question of how closely the difference solution agrees

with our analytical results. For the Uniform Collapse problem, at least, the
agreement is exact. We gean By this that the selutien t9 the difteranes

equations (3.1) to (3.6) over the non-unifora mesh: X, = - Rk)%

(1 - R)]Axl/z' with QL given by (7.5) and g(x) given by (7.2) [which, for the
0.0

. difference equations, is the same as using QL = -C1 0 cs Aul, is precisely

given by (7.9) to (7.11). To show this, we let u:+1/2 = ulxk,(n + 1/2)At),
n+l

pk+1/2 = p[(xk + xk+1)/2, (n + 1)At], etc. Then, from (7.9) and (7.3),

k
n+l/2 = 1l 1 -R - 1
= - - - - - + - .

uk xk Cl(R l)Cs(n + 2)At = i—:—i—txl/z Cl(R 1)Cs(n 2)M: y (7.13)

and similar substitutione in (7.11) give p::i/z, etc. It is easy to verify
that (7.13) etc. exactly satisfies (3.1) to (3.6).

That the difference solution (7.13) is precisely the exact solution
(7.9) is no doubt a function of the simplicity of this Uniform Collapse test
problem, but it does confirm our analysis that the source of error arises
from letting £ = Ax in the Lagrangian QL difference formulation. Also, it
is easy to verify that if QE of (3.9) is used in the Uniform Collapse test
problem, then (as in our experiments) the difference solution is also the
exact solution, without Q, and is thus independent of the mesh interval.
Consequently, our theory is in exact agreement with our numerical results -
at least for this simple Uniform Collapse problem.

For the general case of a non-uniform mesh (i.e., test problem #2), we
arque by numerical experiment that the source of difficulty indeed lies in
allowing ¢ = Ax in the difference approximation of the Laqrangian QL
formulation, which, in turn, implies that § = £(x) in the differential
equation formulation of QL. That is, we want to show that the numerically
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observed non-uniform mesh error is simply due to the error in the solution of
the differential equations when Q;, is given by (7.4). We do this by using
the QL of (7.4) and ¢ = 2(x) of (7.2) in equations (2.1) and solving

test problem

#1 (which is just test problem #2 with equal mesh intervals). This leads

to the difference equations (3.1 to 3.6) with (Q ) of (7.4) glven by

L k+1/2

Au_2

2
C [} "—(x)Ax k+1/2 Clpk+1/2( )k+1/2“'(x)nx k+1/2 ’ (7.14)

Q) 4172 = CoPre1/2

where now (for equal mesh intervals: Axk+1/2 Axl/Z) lz(x) ] is given by

e (x) 22 = 2{f(R - 1)(k + 1/2) + 11/(R + 1) }(Aul (7.15)

Ax k+1/2 k+l/2 °

We want to show, then, that both equal and unequal zoning lead to
essentially the same numerical solution. This numerical solution, in turn (we
assume) , converges to the exact solution of the differential equations (2.1)
with Q given by (7.4), and 2(x) given by (7.2). 1In particular, in Fig. 14, we
use equal mesh intervals (i.e., Axk+1/2 = Axl/z) and take R = 1.05 in (7.15).

This choice of R corresponds to an increasing mesh interval; and, just as
in the second half of test problem #2 (with R = 1.05, Fig. 8), the density is
seen to be too low. More than that, the deneity in Fig. 14 is too low by
exactly the same amount as in Fig. 8, which shows that thias QL error is
independent of the mesh interval used, and we conclude that we essentially
have convergence to the exact solution.®

This establishes that it is the Lagranae formulation QL’ where g is
taken to be the mesh interval Ax, that causes this Q error. Thus all QL
formulations will presumably be equally in error by a similar argument, while
only the fixed-length QE results are correct (Fig. 13).

A more practical solution to the non-uniform mesh error is to use the
(Q &H ) method. Using an artificial heat flux HL not only eliminates the Wall
Heating error, but also allows for smoother shocks, and thus smaller Q
constants Cg and Cl. This is shown by comparing Figs. 15 and 16. Fig. 15
compares R = 1.05 and QL = 2p(Au) with the (QL&HL) method - in both cases,

*In Fig. 14, the results are smoother than in Fig. 8 due to the presence of a
linear term in Q. 1In particular, in Fig. 14, we used QL(cﬁ,Cl) = QL(l 1/2)
versue 0r1(2,0) = Zp(Au) in Fig. 8. Of course, the Wall Heating Q error in
Fig. 14 remains, since it is a Q error of type #1 and occurs for all Qs, as

discussed in Section 4.2,
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QL = Zp(Au)z. In Fig. 16, we make the same comparison, but with QL = p(Au)2
(i.e., C: = 1), and we see that the (QL&HL) method produces a corresponding
reduction in the non-uniform zoning error to around 3%. 1In both Figs. 15 and
16, we see that the (QL&HI) method has eliminated the Wall Heating type #1
error. For modest values of R, then, the (QL&HL) method may give sufficient
accuracy; otherwise, the (QE&HE) method is needed, and both the Wall Heating

error and the non-uniform mesh error will be eliminated.

8. Q ERRORS IN SPHERICAL (§ = 3) GEOMETRY

The third type of Q error is related to strona shock propagation in
spherical (or cylindrical) geometries. This error is considerably more
serious (up to 1000% error in excess shock heating near the oriagin) and is
also more complicated than the previous Q errors. This type #3 error depends
on the Q formulation [i.e., QL of (2.2) ws. QL(v) of (2.6)]1, and also seems to
depend on whether Q is treated as a scalar or a tensor viscosity in the
formulation of the hydrodynamic equations. In particular, a tensor
formulation due to Schulz8 and one due to Whalen9 produce less Q heating
behind shocks and give sharper shocks than our standard QL formulation. Those
sharper shocks and less central heating are instrumental in reducing this
third type of Q error, and both of these tensor formulations are considered
more appropriate in spherical geometry than the usual equations (2.1).

Test problem #3 is just the spherical (§ = 3) generalization of test
problem #l. Here the post-shock solution is, again, a set of constant-value
step functions (u+, p+, e+, and P+) (see Fig. 174 of Noh's Generic Constant
Velocity Shocks). The initial conditions for the unit sphere (0 <r <1) are
u(e,0) = u® = -1, p(r,00 = % =1, e(r,0) =¢® =0, anda 2% = (y - 1)p%° = 0,
and the boundary conditione are R(O,t) = 0 and u(l,t) = -1. The exact solution
(for y = 5/3) is given in Fig. 174, where u* = 0, p* = 64, ¢* = 1/2, and
p* = (2/3)p%e’ = 64/3. The shock speed is is(t) = 8 = 1/3. The preshock
values are u = uo =-1, ¢ = eo = 0, P = Po = 0, and the density in front of
the shock is given by o = po(l + t/R)z. The shock position, Rs = t/3, gives
the preshock density p- = (1 + t/Rs)2 = (1 + 3)2 = 16, which we see is
independent of t, and thus leads to the constant post-shock values aiven above.

Our standard test problem has 100 mesh intervals (Ar = 0.01 and K = 100),
and the results are compared at time t = 0.6. Since the shock speed is S =
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1/3, 80% of the mesh, or 80 mesh points, have been traversed by the shock, and
one would expect accurate results.

Unfortunately, this is not the case. In Fia. 18, the standard QL(2) =
2p (aw)? is compared with the original o.M = 2% (/R (av/at)? = 25100 +
22%512 [see (3.12)1, and both are compared with the exact solution p' = 64.
The numerical results are strikingly poar and, in fact, hardly Dear any
resemblance to the exact solution. The error for the standard Q is seen to be
on the order of 600% near the origin and 20% behind the shock, while the error
for the original von Neumann~Richtmver Lagrangian Q is roughly 1000% in the
central region and nearlv 40% behind the shock.

Clearly, this third type of Q error depends on the Q formulation. There
are several reasons for this. One is related to the Shockless Q Heating
error of Section 5, since the first zone of test problem #3 is just a special
case of our Uniform Collapse test problem, and we found in (5.9) that the Q
energy errors went ae AeL(v) = 62AeL. Thue, for § = 3, the error using QL(v)
is nine times as large as using QL'

An even more disquieting error arises from using the QL(v) formulation of
Q, which preheats the gas ahead of the shock. This occurs because, in the
preshock region, v = 1/p = (1 + £/R) 2, and thus, v, = =(2/R) (1 + t/R) -3
from which it follows that QL(v) # 0. This preheating is, of course, not

<0,

physical, but is another instance of a Shockless Q Heating error. Note,
however, that our standard QL vanishes ahead of this shock. This error and
the large Shockless Q Heating error near the oriain combine to produce errora
for QL(v) considerably worse than those for QL' as shown in Fig. 18. Indeed,
it's surprising that the solution is as good as it is.

Just how slowly the QL(V) solution converges is shown in Figs. 19a, b, ¢,
and d, where the results are plotted for various mesh intervals [K = 50 (Ar =
0.02) up to K = 800 (Ar = 0.00125)1. Even at K = 800, the numerical solution
atill has a disquieting error. These results show that QL(v) of (2.6) is a
poor formulation and is essentially the reason that our definition of QL given
by (2.2) is taken to be the standard Q (for § = 1, 2, and 3). We strees this
point, since QL(v) atill seems to be in common use.

Now, of course, there are still serious errors in the use of the standard
QL = Zp(Au)z. This difficulty is analyzed in Fig. 20. The problem is seen to
be associated with the shock smearing due to Q, which "senses™ an incorrect
(i.e., too small) jump-off value of the preshock density (p-)- That is, the Q

shock smearing selects a p_ < 16, This error is a maximum at early times and
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becomes less serious in time as (the similarity) solution spreads out the
preshock region over more and more mesh points, and thus the fixed shock
thickneas (i.e., it is always spread over =3 mesh pointe) becomes a emaller
fraction of the preshock region. The key to more accuracy, then, is to
sharpen shocks as much as possible. We confirm this araument in Fig. 21,
where we prove numerically that this Q error is an error of the Q
shock-smearing method, and is thus already an error in the exact solution

of the differential eguations with Q. The arqument is the same as
in Section 4, where we seek the limit solution as Ar + 0 while holding g

constant in Q = (Cqy 2) p('A"g)2 Thue, this third type of error is related to
the Q formulation, but not to the particular difference equations.

One way to sharpen shocks, as we found before, is to use Noh's (Q&R)
shock-following method ((2.1, (2.2), and (2.3)]1. Thie worke because using a
beat flux H in conjunction with Q makes it possible to use smaller Q
constanta C: (and C ) (while atill keeping the noise level down behind the
shock). This is shovn in Fig. 22a, where the atandard QL(Z) = 2p(Au)
is compared with the (Q ) method using QL(2/3 ¢1/5) and H(4 1). Using
QL(2/3 +1/5) glves sharper shocka and an improved value of p . and ueging the
heat flux H smooths out the noise behind the shock. Of much more importance,
however, is that the central heating error is nearly eliminated. This is seen
) in Fig. 22b, where e+ = 1/2 over the entire post-shock region. 1Indeed, the
results of Fig. 22, using (QL&HL) would be nearly exact if one assumed that
o = 14.5 (i.e., o -(1-—-)p =4x14.5=158, andu’ =0, ¢ =1/2,
etc.), and thus the only real error in the calculated post-shock values is due
to the shock smearing that picks the wrona preshock density (i.e., p- = 14.5,
as argued above). Just how the improvement qoes with smaller Q constantes cg
and c1 is shown in Fig. 23, where it ia clear that the sharpest shock gives the
most accurate solution.

The non-Q PPM of Colella and Wbodvard7 producees very sharp shocks (on the
order of one to two mesh widths), and their results are shown in Fiaq. 24. Here,
they achieve high accuracy on the standard K = 100 test problem and nearly exact
results using an accurate adaptive-mesh shock-following procedure, with K =
400. The K = 400 results are also shown to be nearly as accurate (converaed) as
the standard PPM solution with K = 1200. The effect of using an adaptive mesh
is to minimize the actual (i.e., physical) shock thickness (which is a2ll-
important in determining the correct preshock value, p- = 16, and it is thus
clear that such a procedure would benefit any finite-difference method.
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9. SCALAR VERSUS SCHULZ'S TENSOR Q0 FORMULATIONS

In 1964, SchulzB proposed that Q be treated as a tensor yiscosity and
gave the following (T) formulation of the hydrodynamic equations (for § =1,
2, and 3). We include the von Neumann-Richtmyer ascalar (S) formulation, (2.1)
again for comparison, and note that the use of the artificial heat flux,

H, remains the same in both formulations.

+ -
pu, +Pp=-0

Scalar (S) (9.1)
u §~1
p(et + Py, ) = -Qlu + (¢ -~ 131+ RG-I‘R Hlp
Q
pu, + P_ = =Q_ - [(8 - 1))
t R R R Tensor (T) (9.2)
1 s-1
p(et + Pvt) = -QuR + Rs_l IR H]R .

Schulz also defined a new Q, which we denote by

Q_(5) = c:pgzlurr.3/2.ur|1/2 , 1f u_< 0, and 0 otherwise. (9.3)
Here £ = Ar in the difference formulation as usual.

Now, Schulz's QL(S) eliminates the Shockless Q Heating error (for the
Uniform Collapse problem of Section 5 - since u., = 0), and we thus miaht
expect superior results for our spherical test problem #3. Indeed, the
results (Fig. 25) using QL(S) or QL with the tensor (T) formulation (9.2) are
significantly better than using the scalar (S) equations (9.1), but there is
essentially no improvement using QL(S) over using QL' We conclude, then, that
the major improvement occurs because of the way Q enters the equations, rather-
than the form of Q, and we stay with our standard QL = Cgp(Au)z. The reasons
for the improved results are not entirely clear, but in part, the improvement
follows from the formulation of (9.2), where there is less QdV shock heating
than for the scalar equations (9.1). That is, in (9.2), Qdv + QuR,
independently of geometry (8§ = 1, 2, or 3), and thus the non-shock Q heating
term, Q(8 - 1)u/R, is eliminated from the energy eguation.

In Fig. 26, we compare our standard QL(Z) = 2p(Au)2 (T) with the
(QLFHL) (T) method [using QL(2) and HL(G)I. The error in density is about
the same just behind the shock, but the central heating error is nearly

eliminated, as seen in Fig. 26b. To improve this result, it is necessary to

25



narrow the shock width, and this is done by reducing the QL coneatant Cg. In
Fig. 27, we compare QL(1/4) (T) (which indeed has a narrower shock, but is
extremely noisy) with IQL(1/4)&HL(10)] (T) (which is still fairly noisy, but
gives superior results).* These (QL&HL) (T) results of Fig. 27 are reasonably
smooth behind the shock and are essentially exact. Thus, we find the best
all-around results for the 100-zone test problem are given by the (QL&HL)
shock-following method using Schulz's tensor formulations (9.2).

The resulte are summarized in Fig. 28, where we compare the various QLs,

(QL&HL), and the PPM.

10. WHALEN'S TENSOR Q FORMULATION

Whalen, in Ref. 9 and in a private communication, presents some
remarkably accurate results for our spherical test problem (gee Figs. 29 and
30), which were obtained using his covariant tensor Q formulation of the
hydrodynamic equations. We conclude by giving his formulatione for § = 1, 2,

or 3, and in particular, concentrate on the case of spherical geometry (§ = 3):

pu + (B + @)y = =6 - (g~ o*)/R , ana

(10.1)
pe, + (2 + Qv = (6 - Du(@- /R,
where Whalen defines
R 2 1 -
Q = (3/2)(coz) puR[uR - sv-u) , and
¢= 2 E—l.-
Q (3/2)(C°E) puRlR 3v u) , (10.2)
and thus
R _¢_3 2 -4
0 Q -2w&)mhmn Rl. (10.3)

*For general use, c: = 1/4 is too small, and too much noise results. A less
noisy (but also slightly less accurate) choice for QL and H; are
lo,(2/3,1/5) & H (6,0)]1(T). That is, Q,(2/3,1/5) = (2/3)p(Au)2 - (1/5)pCsAu
and HL(G,O) = 6plAulle.
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Now, let § = 3, then Veu = (uR + %E)a and

R 2 u
Q = (Coz) puRluR - R] . (10.4)

Comparing (10.3) and (10.4), we see that
-t = %QR , (10.5)
and we can write (10.1) (for § = 3) as

pu, + (B + 0 = -3(0")/R , and

R R (10.6)
pc'__+ (P +Q )vt- 3u(Q)/R .
In the difference formulation,* Whalen sets ¢ = AR, and thus
R 2
Q = CopAu[An - 2%;] if Au < 0 , and is otherwise 0. (10.7)

In Pig. 29, Whalen compares his covariant formulation (10.6) with Shulz's
formulation (9.2) and the scalar equations (2.1) ueing various Qs. His

notation meana

Q= (Div u)? = Q. (v) = C:p[Au + 29%512 , (i.e., our (3.11)1;

Q0 = (Del u)2 = QL = Cozp(Au)2 , or our (3.7); and from (10.7),

Qﬁ(tensor) = C:p(Au)lAu - E%B] .

Whalen's covariant results are clearly superior to the other Q
formulations, and when we consider that only 40 zones (K = 40) are used in
Fig. 29, then his formulation proves to be remarkably accurate. In Filg. 30,

the effect of refined zoning is shown for Whalen's covariant equations (10.6)

and (10.7), and the results show a rapid convergence. Indeed, his results are

*A word of caution: we were not able to reproduce Whalen's results with the
most straightforward differencing of (10.6) and (10.7). In particular, (10.7)
vanishes for the most central zone where Au = u and AR = R [i.e., uAR/R =
(u/2)R/(R/2) = u, and thus Au - uAR/R = 0). In a like manner, QOf also vanishes
for our Uniform Collapse problem of Section 5, and thie may contribute to his
accurate results here. In any case, some subtlety is involved, and we await
further clarification from Whalen on this subject.
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remarkably accurate even for K = 25, Now, the type #l1 (central, or Wall
Heating) Q error is still present with this formulation (as it is for all Q
formulations ~ see Section 4) and suggests that near-perfect results would be
obtained by including Noh's heat flux H in a (Qp8H,) shock-following

method.

1l1. CONCLUSION

We conclude that the Q errors of types #1, #2, and #3 are not due to

errora in any particular difference-method solution, but rather, the Q
errors are intrinsic to the artificial-viscosity-Q shock-followinag method
itself. That is, these Q errors are contained in the exact solution to the

differential equations with Q. Therefore, improvements must be sought in
modifying the Q method itself (e.g., by using a tensor formulation or using

both O and H to follow shocks or to minimize the physical shock thicknese, as

in the non-Q PPM). More generally, since the Q errors are shown to be related
to the (artificial) shock thickness of the shock-smearina procedure, then all

methods will benefit from using an adaptive-mesh shock-capturing pProcedure.

In all cases, narrow shocks produce the least error; thus the

(QLGBL) shock-following method, which allows the use of smaller Q constants -

and thus sharper shocks - is to be preferred over Q alone; and most important,
the inclusion of an artificial heat flux H minimizes the excess Q heating

generated on shock reflection. In particular, it is shown that the (QL&BL)

method using Schulz's tensor (T) formulation (10.2) with minimal Q constants

C: and C1 is most satisfactory.
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P

Density

0 0.2 04 0.6 0.8 1.0 1.2 14
Distance X

Ratio

Figure 1. The standard calculation, where QL = 2p (Au)z. The shaded area is

+
the error in density due to the type #l1 Wall Heating error. That is, P =

+ + +
(2/3)p ¢ , and for this problem, P 1is correct; therefore, the density error

+
in p 1is inversely related to the error in e+. In other wordes, a too-larage

+
value of ¢ implies that p+ is too small.
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Pigure 2. (1) Q (1,1/3) = plau)” - (1/3) 6C_(8u)
(2) 0.(4,2/3) = 4p(aw)? - (2/3)5C_ (au)
(3) Exact solution.

This shows that the Wall Heating Q error increases with the magnitude of the
2

QI.. constants C0 and cl'
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Au 2 Au
Figure 3. (1) QE(1-1/3) = D(r;)z - (1/3)DC8(Z‘;)
(2) QL(1'1/3) = plaal - (1/3)pCS(Au)
(3) Exact asolution.
The Wall Heating error (shaded regions) 1s larger for QE than for QL with the

same size coefficients C: and cl. Thus, this error also depends on the 0

formulation to some extent.
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Exact solution
3H —
Q
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e
a
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0 0.2 04 0.6 0.8 1.0

2 Distance X
Figure 4. Curve 1: QL(1,1/3) = p(Au) - (1/3)pCS(AU)- Curve 2: QL(4,2/3) =

4p(A“)2 - (2/3)pcs(4u), and for this calculation we plot R:(Ax/z,At/z) as
(1/2)R:(Ax,At). That these two curves have the same Wall Heating error proves
(as argued in Section 4.2) that the Wall Heating error is really an error in
the exact solution of the hydrodynamic equations (2.1) with Q. That ie, curve
2 is equivalent to a mesh refinement (where Ax -+ Ax/2 and At + At/2) of curve
1, and it is clear that the solutions are essentially converged. This also

gives the correct interpretation of the results of Fig. 2.
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2
Figqure 5. QL = (2/3)p(au) - (1/5)pcsau. These small QL constants Co and C1

reduce the Wall Heating error, but don't eliminate it.
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Fiqure 6. QL(2/3,1/5) = (2/3)p(A|l)2 - (1/5)pC8(Au), and HL(0,3/4) = (3/4)pCsAe.
This is the same Q used in Fig. 5, but now the artificial heat flux H is
included in the energy equation, and the Wall Heating error has been
eliminated. We also note that the shock solution is smoother using H (in

conjunction with Q).
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pt=4
=9

$=1/3

P —
AXZO = sz1 =1
Ax,,q =R AxK Axyyy =RAX, |p~=1
0<k<20 21<k<40 u =-1
0 Xq X3X5 X20 Xie Xic+1 Xa0

Mesh ratio R > 1

Figure 7. The unequal-zoned, infinite-shock test problem. The initial and
boundary conditions are the same as in test problem #1, but here the initial
zoning varies geometrically with Axk - Mxk (for constant R_l or R). The
mesh interval Axk decreases for the first half (0 < k < 20), then Ax
increases for the second half of the mesh. The problems are normalized (for
any ratio R) by taking szo = Ax21 = 1.0. The exact solution, of course,

is the same as in problem #1 and is shown for y = 5/3. That is, p+ = 4, and
the shock speed S = 1/3.
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Type #1 Error

Density p

1 l L
0 10 20 30 40
Axy, = 2.65 Mesh index k
Mesh ratio R = 1.06

Figure 8. Here R = 1.05, and this is the standard calculation usinag the bench
mark QL(Z,O) - 2p(Au)2. Thie type #2 error, Ap+ = p+ - 4, 1s positive for the
first half of the mesh (0 < k < 20), where the mesh interval decreases (i.e.,
R-1 < 1) and is negative (i.e., Ap+ < 0) for the second half (21 < k < 40),
where the mesh interval increases (R > 1). The type #1 Wall Heating error is

still present in the first few zones next to the rigid wall on the left; we
note that here, Axl/z = 2.65 (compared with Axl/z = 1.0 in test problem #1),

and hence, this Wall Heating error is more serious than it may appear.
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Figure 9. Standard calculation using QL(Z,O) = 2p(pu) , with R = 1,25, Here

we note that Axl/z

large.

= 16.37; thus both the type #1 and type #2 errors are very
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Figure 10. Standard QL(Z,O) = 2p(Au)2. R = 1.25, and the type #2 error is
= 86.7, and the type %l error is also enormous.

nearly 100%. Here, Ax1/2
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Type #2
error = ¢
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Mesh index k
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Maesh ratio R = 1.05

Figure 11. Here the Eulerian (fixed-length) QE ie used, which spreads shocks
over a fixed physical distance: Q,(6,4/5) = 6p (%-:-:-)2 - (4/5)0C, (33, R = 1.05,
and the type $#2 error vanishes (i.e., ApE = p; - 4 = 0). However, the Wall
Beating (type #l1) error is now very large using QE' due to the large constants
Col (and Clz) that are required to spread the shock over approximately three
of the largest mesh intervals. (That is, for R = 1.05, ¢ = Axmax = Axl/z =
2.65; and we take c0 = 0.9 and cl = 0.3. As a comparison, see Flg. 3, where
for QE' with Ax =1, we used Co = 1 and C1 = 0.33,)
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Pigure 12. (1) QE(6,4/5) = 6p(§§)2 - (4/5) pCa (%E), the Eulerian (fixed-
length) Q (see Fig. 11), which is compared with the (QE&HE) method.

(2) Here QE(6,4/5) and HE(O,G) - GpC!Ae' and now both the type $#1
Wall Heating error and the non-uniform mesh type $#2 error are eliminated.
However, there is too much shock spreading using QE for this to be a practical
solution to minimizing these errors.

(3) Exact solution.
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VNoh fixed-length:Q = Co p
+Cypoc, [2Y  (c3-6andc;=08)

ONoh: @, =C2 p |Au? + C, pc, |Au]|
(C3=1,C,=0.33)
o Noh QL with large constants
(i.e., Cz—ZandC = 0.67)
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O White: Q;=C2 p |Au| 32 IAPI (€2=2)
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A Von Neumann - Rlchtmyer
Standard Q: Q, = Cop |Au)2
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6 (C =2) —
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Decreasing Ax
Q 5 -
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4 Exact solution
Increasing Ax
35 |
1.0 1.1 1.2 13

Mesh ratio R

Figure 13. Non-uniform mesh AX 1 = RAx of Fig. 7, comparing various Q
fornulat:lonsl’s’6 and their type 42 error, Ap = p+ - 4. Here, only the
Eulerian formulation QE gives ApE =0 (i.e., using a fixed-length QE' the
type #2 error vanishes). We note that all Lagrange formulations QL (l.e.,
where ¢ = Ax), produce ApL # 0 (i.e., a type #2 non-uniform mesh Q error
occurs). We see that this error grows with the magnitude of co and also
with (R - 1) - thus ApL o co(R -1).
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Figure 14 (opposite). Here we prove numerically that the non-uniform mesh
error is due to the Lagrangian formunlation of Q in which the standard usage is

to take the length g equal €tO AX (f.€., & This implies (for

k+1/2 = D¥gar/2)
an unequal mesh) that & = g(x). In Section 7, we arque that an unequal mesh,
given by Ax = R Axk ¢+ is equivalent to using (in the differential

k+1/2 2 2
equations) QL = Copll(x)] (ux) - 1pz(x)ux [l.e., (7.4)1, where 2(x), is
given by (7.2): 2(x) = 2[(R - 1)x + Axl/zl ¢+ (R +1). For this choice of QL and
L(x), we seek the exact solution of the differential equations and want to
show that this solution contains what we have called the type #2 non-uniform mesh
error. To do this, we difference the above QL and 2(x), assuming a constant

Axk+1/2 142 for test przzlem #l. This is the same, then, :: using

Q) ke1s2 = € °k+1/2'k+1/2‘nx’k+1/2 €1 Pr+1/2 o) 41 /2" k+1/2 (Gx k41727 vhere
(for equal Ax) we have zk+1/2 2f(R-1)(k +1/2) +1] + (R+1). For

R = 1,05, this is seen to be identical to the calculation in Fig. 8 -~ where we
compare just the second half of the mesh (21 < k < 40) (i.e., where the mesh
interval Ax increases). In this comparison, we see that the solutions are
essentially the same® (when we exclude the Wall Heating type #1 error above).
The point here is that if the unequal mesh (Axk+1/2 - RAxk 1/2) is used with
the leabove fi.e., (7.4)) and t(x) of (7.2), then QL reduces to the standard
QL = cop(AU) - CopC(Au). Thus both the above calculation and the

second half of the calculations in Fig. 8 are simply different approximations
to the identical difference equations, but with equal mesh intervals (above)
and unequal intervals in Fig. 8. Since these solutions agree, it is clear
that the numerical solution is not sensitive to equal or unegual zoning, and
we conclude that we essentially have convergence, and indeed the unegqual mesh
error is already an error in the exact solution of the differential

equations. This completes the numerical proof.

*The solution shown is amoother than in Fig. 8 due to the use here of a linear

Au, 2

term in QL. Here, QL(C ’ C ) = QL(l' 1/2) = pl (x)Gﬂ-) (1/2)pl(x)C§z;

versus QL = 2p(Au) ~ in Fig. 8.
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Figure 15. R = 1.05, and we compare the QL and (QL&HL) methods:
(1) Q(2,0) = 2p(au) %
(2) QL(Z.O) = 2p(Al-l)2' and HL(2-5.2/3) = 2.5plAulAe + (2/3)pCsAe.

As expected, the Wall Heating (type #1) error is eliminated when the heat flux
HL is included.
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Figure 16. R = 1.05, and we again compare QL (but here using a reduced
coefficient C2 = 1) with the (Q &H ) method:

(1) QL(l,O) = p(Au)z. The solution is noisy, but both type #1
and 42 errors are reduced by using this smaller value of Cg.

(2) QL(I'O) = p(AU)z & HL(0.2/3) = (2/3)pcsAe. We see that
using both Qr, and Hp eliminates the Wall Heating type #1 error altogether and
{with emall Q coefficients) reduces the type #2 non-uniform mesh error to =3%.
The (QLGHL) method is much smoother than QL alone and may be a practical

compromise for mesh-interval changes that aren't too large.

47



Noh’s (generic) constant velocity shocks
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Figure 17 (opposite). The exact solution at t = 0.6 to Noh's Generic Constant-
Velocity Shock problemszz (a) initial conditions; (b) plane geometry (§ = 1)
with a shock generated at a rigid wall; (c) a shock generated at the axis of
aymmetry of a cylinder (8§ = 2); and (@) a shock generated at the center of a
sphere (§ = 3). All solutions have constant post-shock states, and all have
the same constant shock speed (S = 1/3), initial conditions, and y = 5/3. The

essential difference is the preshock denaity: p- =] for § =1, p- = 4 for § =
2, and p- =16 for § = 3; and p = po(l + t/R)c-l in front of the shock.

T T 71 1

60— Exact solution =]

0 1 1 1 1 1 | 1 |
0 0.10 0.20 0.30 0.40

Radius (R)

Figure 18. This is the benchmark test problem, where Ar = 0.0l (i.e.,

K = 100) and time t = 0.6. Here we compare the Standard QL = 2p(Au)2 (curve 1)
with the original von Neumann-Richtmyer Q formulation, (2.6):

o, =280 %@ *EN? = 20007 E AN % = 20080 + 228y (gee (3.12)1
(curve 2). Here QL 15 superior to QL(v), but both Q0s produce serious errors.

The correct solution is p+ = 64.
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Figure 19a. This example shows the truly large errors in density that result
from using the original Q (v) = 2(Az)2(§)4(§-§)2 = 2p(8u + 282 [gee (3.12)1
for various mesh intervals (Ar). The comparisons are t = 0.6 and Ar = 0.02,

0.01, 0.005, and 0.00125. That is, for K = 50, 100, 200, and 800. This shows
+
that the convergence of the density to the correct value p = 64 is very

slow indeed, and the error 1s unacceptable even for K = 800.
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Figure 19b. Likewise, the large errors in pressure for K = 50, 100, 200, and
800. The correct value is P+ = 64/3.
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Figure 19c. Errors in internal energy for K = 50, 100, 200, and 800. The

exact solution is e+ = 1/2,

52




Velocity

1 41 i l AL
0 0.1 0.2 03 04

Radius (R)

This shows the very serious errors, using QL(v), in the shock

Figure 194.
Here,

speed for the coarser grids of K = 50, K = 100, and even K = 200.

S5 = 1/3 is the correct solution.

Note: Figures 19a, b, ¢, and 4 are courtesy of M.P. Sohn of Los Alamos

National Laboratory, who used one of Los Alamos' standard Lagrangian codes.
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Sphere: {po =1, ul= -1, Po == 0}

5
EOS: y = —, infinite reflected shock
p =64 7 3

60— |t=6 (1) Solution independent of EQS —

$=1/3 (1) u* =0, €* =1/2, and in front of shock
Rg=1/3t=2

1 = plane
=30 (2) pe)=p2(1+£)°-1 t=¢/R, 5 = { 2 = cylinder

3 = spheare
(3) &£ = 3 (shock front) »
= plane
$=1/3 S p”=p(3) = g0 (4)8"1 = l 4p°°= cylinder l = 16 sphere (5 = 3)
Q B 16p" = sphere
R, =1/3t=10
a S
s 40— () Solution dependent on EOS P = (y - 1)pe = 2/3 pe for (y =5/3) —
+
g La ) - 201802 LA, LA PR
"t
p

S= 7—;-1 u® = 1/3 (shock speed) and p* = (7)°

4 plane § = 1
~pt = (4)° = { 16 cylinder 5 =2

20 64 sphere § = 3 —
E=3 _—§=3
16 —
i p=p% (1+£)2 where £ =t/R
9
I =1 | E=1
4 |1 £ e —— _]
|
N B T v | | 1
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o~ |-

AR® = R(3,6)-R(2,6) AR3° = R(3, 30) - R(2, 30)

Radius (R)
Figure 20. The solution for Noh's spherical test problem (Fig. 17d) is given
at two different times (t = 6 and t = 30) for the scale variable ¢ = t/R. As
t increases, the preshock density profile is spread over a physically greater

and greater distance. Hence, the preshock value p- = 16 should be progressively
easier to resolve numerically as time advances. The wiggly line is the
numerical solution using the standard QL = 2p(Au)2. The numerical error is so
large (10% £ e < 600%) that it hardly resembles the exact solution: p+ = 64.
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Figure 21. Here we establish numerically (see Sections 4 and 8) that the

difference solution (for Ar = 0.0l) has essentially converged to the exact
solution of the differential equations with Q = (Col)zp(ur) 2. We take cg = 2

and g = 0.01, and thus Q = 2-10-4 p(ur)z. The solid curve is for Ar = 0.01
ana o = 22107  (au/ar)? = 2p(au)?. Also, for 1 = 0.01, we let

Ar+Ar/2 = 0.005, giving QL = 2'10_4D(AI.I/AIE/2)2 = 8p (Au)z, and this 1is plotted
as dots (*), and we take R:(A-ZE, 5-25) = (1/2)R:(Ar, At) (see discussion in

Section 4.2). Thus, the spherical shock error is not related to the difference
method, but is an error in the solution of the differential equations due to Q

shock smearing.
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Figure 22a.

constants Cg
(1/5) pC(Au)
smoother and
still on the

Standard QL(Z.O) = Zp(Au)2 vs (QLGHL), where (using smaller QL
and C, to give a sharper shock) QL(2/3,1/5) = (2/3)p(Au)2 -
and HL(4,1) = 4p)Aulie + pcsAe. The (QL&HL) method+is much
more accurate than QL alone, but the error, Ap = p - 64, is
order of 10 to 20%.
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Figure 22b. QL = 2p(Au) and the more accurate (QL&HL) method. The exact

solution is e+ = 1/2, and we see that the energy error is essentially zero
using the (QL&HL) method. These results (2la and 21b) show that the error is

due to the incorrect preshock density p and would be essentially exact if

p

p+ = 49_ = 4 x 14.5 = 58, which is the observed value, and thus the Hugoniot

jump conditions would be satisfied. The difficulty is seen to be that of

+
14.5. Then, in addition to the correct value ¢ = 1/2, we would have

shock smearing. That is, the correct value p- = 16 cannot be accurately

resolved using (Ar = 0.01).
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i p* = 64 (exact solution)
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Figure 23. Sharper shocks reduce the p error. Errors go as QL(1,1/3) >
QL(Z,O) > QL(2/3,1/5), where, in each case, there is less and less shock
smearing. The (QL&HL) method also allows for small Q coefficients, CO and

Cl' and less central heating error to produce the sharpest shock profile.
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Figure 24. The (non-Q) PPM of Colella and Woodward has very narrow shocks
(=1 or 2 mesh intervals) and for K = 100, is superior to all of the results

of Fig. 23. PPM using K = 400 and mesh refinement (a shock-capturing adaptive
mesh) is equivalent to the standard PPM using K = 1200, and is thus a very
important procedure for tracking shocks accurately (Figures courtesy of P.
Woodward) .
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Figure 25. The lower curve uses QL(Z,O) = 2p (L\l-l)2 in Schulz's tensor (T)
formulation (Section 9). The upper curve also uses Schulz's (T) formulation
and, in addition, his QL(S) = 29|A2u|3/2|Au|1/2. Both Q formulations are seen
to give essentially the same results. We conclude that it is the tensor use

of Q that is important rather than the QL formulation. Thus, we stay with the
standard QL = Zp(Au)2 usage.
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Density

Figure 26a.

artificial heat flux H (See Section 9).
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0.25

0.30 0.35 0.40

Schulz's tensor Q formulation with and without the use of an

The lower curve is the tensor (T)

2
Q formulation using QL = Q(2) = 2p(Au) and H = 0. The upper curve is

(QL&HL) (T) using QL = Zp(Au)2 and HL = 6plAulAec. This shows an obvious

improvement using HL with QL' but finer tuning is possible, as seen in Figs.
27a and 27b.
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Figure 26b. The overheating at the origin is greatly improved using

(QL&HL) (T), and in fact, is almost the exact solution: s+ =1/2.

Figure 27 (opposite). QL(1/4) = (1/4)p(Au)2 in the (T) formulation is
very noisy,* but produces a narrow shock. The sharp shock remains in the
[QL(1/4) & HL(lo)] (T) method, where HL(lo) = 10plAutAe, and most of the
post-shock noise is damped. The density and eneray errors are nearly zero;

thus, the (QL&HL) method is a preferred shock-following procedure when used

with Schulz's tensor (T) formulation (9.2).

*For more complicated problems, the choice cg = 1/4 may be too small, as too
much noise may be generated in the solution and thus reduce the computational
At too severely. A more practical (but somewhat less accurate), all-around
choice is [QL(2/3,1/5) & HL(G,O)] (T). That is, a more conservative use is
0, = (2/3)p(2w) % - (1/5)pCytu and B, = 6p1sulde, but cg = 1/4 and hg = 10 are
preferred where possible.
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Figure 28 (opposite). A comparison of scalar (S) and tensor (T) resulte. The
(non-Q) PPM lies above the best scalar (QL&HL) (S) results, but is under the
QL(T) and (QLGHL) (T) results. PPM7 with mesh refinement and the

(QL&HL) (T) method give essentially the converged (exact) solution.
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Figure 29. Whalen's covariant formulat:lon,9 (10.6) and (10.7), vs the scalar QL
results and Schulz's tensor (T) formulation (Section 9). Here, Whalen defines
QL = (Div u): = C;pIAu ;_Ziué'l_l_lz = QL(v) fi.e., our (3.11)1,
Q = (l;el u) = Cozgau) =Q
Q'k‘ = Cop(Au) (Au - —'i-) .

Whalen's formulation is remarkably accurate for a 40-zone (K= 40) probleam.

L (i.e., our (3.7)1, and his tensor QIL‘,

(Figure courtesy of P. Whalen.)
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Figure 30. Whalen's covariant tensor Q formulation, (10.6) and (10.7), where

R 2 R
his tensor QL is given by Qi = CoplAueru - E%—]. The post-shock density is
+
essentially correct (pexact = 64), even for K = 25, and the convergence is
considerably more accurate than for the scalar equations. (See Fig. 19 for a

comparison of the effects of zonina on converaence.) (Figure courtesy of

P. Whalen.)
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